Orange Lake
Oakland County

Test Date: May 11th, 2012

Water Quality Test Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>West End</th>
<th>East End</th>
<th>Target Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>65.5 °F</td>
<td>65.9 °F</td>
<td>Less Than 80 °F</td>
</tr>
<tr>
<td>Transparency</td>
<td>8.25 feet</td>
<td>3.5 feet</td>
<td>More than 6.5 Feet</td>
</tr>
<tr>
<td>(Water too shallow for complete measurement)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>8.26</td>
<td>8.17</td>
<td>7.0 – 10.0 S.U.</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>380 ppm</td>
<td>362 ppm</td>
<td>0 – 1,000 ppm</td>
</tr>
<tr>
<td>Conductivity</td>
<td>760 μS</td>
<td>724 μS</td>
<td>0 – 1,500 μS</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>165.0 ppm as CaCO₃</td>
<td>172.0 ppm as CaCO₃</td>
<td>0 – 250 ppm</td>
</tr>
<tr>
<td>Hardness</td>
<td>195.0 ppm as CaCO₃</td>
<td>204.0 ppm as CaCO₃</td>
<td>100 – 300 ppm</td>
</tr>
<tr>
<td>Salinity</td>
<td>370 ppm</td>
<td>350 ppm</td>
<td>0 – 500 ppm</td>
</tr>
<tr>
<td>Dissolved Oxygen – Concentration</td>
<td>6.9 mg/L</td>
<td>10.2 mg/L</td>
<td>4.0 – 12.0 mg/L</td>
</tr>
<tr>
<td>Phosphate</td>
<td>10.0 ppb</td>
<td>20.0 ppb</td>
<td>0 – 100 ppb</td>
</tr>
<tr>
<td>Nitrate</td>
<td>176.0 ppb</td>
<td>132.0 ppb</td>
<td>0 – 1,000 ppb</td>
</tr>
<tr>
<td>E. coli</td>
<td>None Detected</td>
<td>None Detected</td>
<td>0 – 300 CFU / 100 mL</td>
</tr>
<tr>
<td>Trophic State Index – Transparency</td>
<td>47</td>
<td>Water too shallow for complete measurement</td>
<td>Oligotrophic: 0 - 40</td>
</tr>
<tr>
<td>Trophic State Index – Phosphate</td>
<td>37</td>
<td>47</td>
<td>Mesotrophic: 40 - 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eutrophic: 50 - 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hypereutrophic: 70+</td>
</tr>
</tbody>
</table>

Discussion

These results show that the water at Orange Lake remains healthy and suitable to support natural wildlife. As there are no signs of pollution, the water is safe for recreational uses, such as fishing and swimming.

The pH, Total Dissolved Solids, Conductivity, Alkalinity, and Hardness readings have varied slightly since last fall. These variations are the results of seasonal changes. There was not a large amount of ice cover on the lake and less than average snow this winter. This resulted in less runoff entering the lake in the spring. However, several large rainstorms in the spring helped restore the water level and flush the lake. As the rains slow and the lake settles, these parameters will also settle to their natural levels.

The Salinity concentration has also increased slightly since the fall. This is most likely due to road salt running off and into the lake.
The Dissolved Oxygen is at adequate levels and show that the water remains suitable for a healthy fish population to survive. As water warms, it is able to hold less oxygen than at cooler temperatures. It is important to ensure the water is well oxygenated during the warmest summer months.

The concentrations of Nitrates and Phosphates continue to remain at very low levels, continuing to prove that the large decreases since 2009 were not seasonal fluctuations. These results confirm that the Biological Augmentation is consuming enough nutrients to improve and maintain the health of the lake.

No E. coli were detected in the water samples collected. E. coli are very sparse in the open water. Also, the cooler temperatures and absence of waterfowl help reduce the amount of E. coli living in the water.

The Trophic State Indices show that the lake is moderately productive. TSI – Transparency uses the water clarity to approximate the amount of algae that clouds the water, but does not take into account other factors that may decrease transparency. The TSI – Phosphate indicate the amount of nutrients available to support nuisance algae growth.

Water samples were taken on 5/11/2012 at 12:00 PM. Water tests were completed on 5/11/2011 at 7:00 PM. This report describes conditions at the time the samples were taken. The quality of the water was tested only to the parameters listed above.

Completed and Certified by: _________________________________ Date: May 18th, 2012
Peter Filpansick, B.S.

Reviewed and Approved by: _________________________________ Date: May 18th, 2012
Paul Dominick, B.A.
Temperature

Target Range: Less Than 80 °F

Transparency

Target Range: More than 6.5 Feet
Target Range: 7.0 – 10.0 S.U.

Target Range: 0 – 1,000 ppm
Target Range: 0 – 1,500 μS

Target Range: 0 – 250 ppm
Target Range: 100 – 300 ppm

Target Range: 0 – 500 ppm
Dissolved Oxygen

- **Target Range:** 6 – 12 mg/L

Phosphate

- **Target Range:** 0 – 100 ppm
Target Range: 0 – 1,000 ppm

Target Range: 0 – 300 CFU / 100 mL
Analysis Information

Temperature: The water temperature directly affects the amount of oxygen that is able to dissolve into the water. The temperature of surface waters is not indicative of the entire water column.

Transparency: The ability of light to penetrate the water column is determined by the amount of dissolved and suspended particles in the water. Although aesthetically desirable, transparent water allows increased light to reach the lake bottom and may result in vegetation growth.

pH: pH is a measure of acidity or alkalinity. pH is a general measure of lake health and can roughly indicate the range of other measurements such as alkalinity and hardness.

TDS: Total Dissolved Solids is the amount of all organic and inorganic substances in the water in a molecular or ionized state. Higher values generally indicate richer and more productive water. Lower values usually indicate cleaner and less productive water.

Conductivity: Conductivity is a measure of the ability of water to conduct electricity. Dissolved ions in the water increase conductivity, thus TDS and Conductivity are closely related.

Alkalinity: Alkalinity refers to the ability of the water to neutralize acids, mainly through the hydrogenation of carbonate ions. This is why the alkalinity is expressed as “ppm as CaCO$_3$”. However, other basic molecules in the water can also contribute to alkalinity.

Hardness: Hardness is very closely related to alkalinity. It is a measure of the dissolved salts and metals in the water, including but not limited to CaCO$_3$.

Salinity: Salinity is the measure of the dissolved salt content of water. Salinity influences the types of organisms that are able to survive in the water. Salinity also affects the chemistry of the water, and including conductivity and potability.

Dissolved Oxygen: D.O. is a measure of the amount of oxygen dissolved in the water. This oxygen is available to fish and other animals for respiration. Vegetation generally increases DO, particularly during the day and early evening. Animals and other respiring organisms consume the oxygen, mostly during the day. Oxygen is also added to the lake through wave action, rain, fountains and aerators.

Phosphates: Phosphorus is an essential nutrient for plant growth. Phosphate is the form of phosphorous that is most readily available to plants and algae.

Nitrate: Nitrogen is also essential for plant growth. Nitrate is the predominant form of nitrogen in water. Excessive nitrate concentrations may also result in pollution and increased vegetation.

Fecal Coliforms: Non-fecal coliforms are naturally found as soil organisms. Fecal Coliforms, such as *E. coli*, are coliforms found in the intestines of warm-blooded animals and humans. The presence of fecal coliforms indicates contamination from either animals or humans.
Trophic States

Oligotrophic: Water is very clear. Nutrient levels are generally low. Plant and algae productivity is also low. Sufficient dissolved oxygen in the bottom, cooler waters allows cold-water fish to survive, such as salmon and trout.

Mesotrophic: Water is moderately clear. Nutrient levels are slightly elevated. Plant and algae productivity is present, but generally not a nuisance. Oxygen and temperature in the lower portion of the lake allow walleye and perch to survive.

Eutrophic: Water is not clear due to high nutrients levels, increased turbidity, and excessive algal growth. There is no oxygen in the bottom, cooler waters, restricting the lake to warm water species, such as bass and bluegill.

Hypereutrophic: Nutrient levels are extremely high, promoting very high algae productivity. Blue-green algae blooms are likely. High turbidity and algae growth make the water opaque. Little plant growth is restricted to invasive plants. The only fish that can survive this environment are rough fish, such as carp, catfish, and mudminnows.